Types of chemical reactions:

- Synthesis When two or more substances (elements or compounds) combine chemically to form another, more complex substance (compound)
- Decomposition When a relatively complex compound breaks down into two or more simper substances (compound or elements).
- Single Displacement When a reaction takes place between two substances (one element and one compound) and the element replaces an element in the original compound.
- Double Displacement When two compounds react in such a way as to switch the locations of two elements.
- Polyatomic ions behave in reactions as if they were element with the major exception that they cannot be released a free, neutral substances.
- The substances that are initially present for a reaction are called the reactants.
- The substances that result from a reaction are called products.
- When a solid is formed in a reaction, it is called a 'precipitate'.
- Abbreviations are used to indicate the 'state' of a substance. These abbreviations are given in parentheses.
 - o (g) or \uparrow means a gas is released.
 - o (s) or \mathbf{V} means a solid or precipitate is formed.
 - o (aq) means that the compound is dissolved in water.
- In the lab, the synthesis reaction was the oxidation of iron. Fe + O₂ → FeO₂
- The decomposition reaction was the decomposition of baking soda. 2NaHCO₃ → Na₂CO₃ + H₂O + CO₂
- The single displacement reaction was the substitution of Iron for copper in copper(II) sulfate. Fe +CuSO₄ → Cu + FeSO₄
- There were several double displacement reactions attempted.

 If a gas was produced or a precipitate formed, the reaction would continue since at least one of the products was removed from the system thus preventing the reaction from reversing.
 - o BaCl₂(aq) + Na₂CO₃(aq) \Rightarrow BaCO₃(s) + 2NaCl(aq) Since BaCO₃ precipitates, this is a double displacement reaction. o Na₂CO₃(aq) + K₂SO₄(aq) \Rightarrow Na₂SO₄(aq) + K₂CO₃(aq) This is just a mixture of ions. o CuSO₄(aq) + NaOH(aq) \Rightarrow Na₂SO₄(aq) + Cu(OH)₂(s) Cu(OH)₂ precipitates. o FeCl₃(aq) + 3NaOH(aq) \Rightarrow Fe(OH)₃(s) + 3NaCl(aq) Fe(OH)₃ precipitates. o 2NaOH(aq) + K₂SO₄(aq) = Na₂SO₄(aq) + 2KOH(aq) This is just a mixture of ions.